Functions in LearnBayes Package -- Organized by Category and Chapter

Category Chapter Name Description
data Chapter 1 studentdata Student dataset
one parameter Chapter 2 beta.select Selection of Beta Prior Given Knowledge of Two Quantiles
one parameter Chapter 2 discint Highest probability interval for a discrete distribution
one parameter Chapter 2 histprior Density function of a histogram distribution
one parameter Chapter 2 pbetap Predictive distribution for a binomial sample with a beta prior
one parameter Chapter 2 pdisc Posterior distribution for a proportion with discrete priors
one parameter Chapter 2 pdiscp Predictive distribution for a binomial sample with a discrete prior
one parameter Chapter 3 binomial.beta.mix Computes the posterior for binomial sampling and a mixture of betas prior
data Chapter 3 footballscores Game outcomes and point spreads for American football
one parameter Chapter 3 normal.select Selection of Normal Prior Given Knowledge of Two Quantiles
testing Chapter 3 pbetat Bayesian test of a proportion
one parameter Chapter 3 poisson.gamma.mix Computes the posterior for Poisson sampling and a mixture of gammas prior
data Chapter 4 election.2008 Poll data from 2008 U.S. Presidential Election
model Chapter 4 howardprior Logarithm of Howard's dependent prior for two proportions
model Chapter 4 logisticpost Log posterior for a binary response model with a logistic link and a uniform prior
data Chapter 4 marathontimes Marathon running times
two parameters Chapter 4 mycontour Contour plot of a bivariate density function
model Chapter 4 normchi2post Log posterior density for mean and variance for normal sampling
two parameters Chapter 4 normpostsim Simulation from Bayesian normal sampling model
utility Chapter 4 rdirichlet Random draws from a Dirichlet distribution
two parameters Chapter 4 simcontour Simulated draws from a bivariate density function on a grid
model Chapter 5 bayes.influence Observation sensitivity analysis in beta-binomial model
model Chapter 5 betabinexch Log posterior of logit mean and log precision for Binomial/beta exchangeable model
model Chapter 5 betabinexch0 Log posterior of mean and precision for Binomial/beta exchangeable model
data Chapter 5 cancermortality Cancer mortality data
utility Chapter 5 dmt Probability density function for multivariate t
general Chapter 5 impsampling Importance sampling using a t proposal density
general Chapter 5 laplace Summarization of a posterior density by the Laplace method
utility Chapter 5 lbinorm Logarithm of bivariate normal density
general Chapter 5 rejectsampling Rejecting sampling using a t proposal density
utility Chapter 5 rmt Random number generation for multivariate t
general Chapter 5 sir Sampling importance resampling
model Chapter 6 cauchyerrorpost Log posterior of median and log scale parameters for Cauchy sampling
general Chapter 6 gibbs Metropolis within Gibbs sampling algorithm of a posterior distribution
model Chapter 6 groupeddatapost Log posterior of normal parameters when data is in grouped form
general Chapter 6 indepmetrop Independence Metropolis independence chain of a posterior distribution
general Chapter 6 rwmetrop Random walk Metropolis algorithm of a posterior distribution
data Chapter 6 stanfordheart Data from Stanford Heart Transplanation Program
model Chapter 6 transplantpost Log posterior of a Pareto model for survival data
data Chapter 7 hearttransplants Heart transplant mortality data
model Chapter 7 normnormexch Log posterior of mean and log standard deviation for Normal/Normal exchangeable model
model Chapter 7 poissgamexch Log posterior of Poisson/gamma exchangeable model
testing Chapter 8 bfexch Logarithm of integral of Bayes factor for testing homogeneity of proportions
testing Chapter 8 bfindep Bayes factor against independence assuming alternatives close to independence
testing Chapter 8 ctable Bayes factor against independence using uniform priors
data Chapter 8 jeter2004 Hitting data for Derek Jeter
model Chapter 8 logpoissgamma Log posterior with Poisson sampling and gamma prior
model Chapter 8 logpoissnormal Log posterior with Poisson sampling and normal prior
testing Chapter 8 mnormt.onesided Bayesian test of one-sided hypothesis about a normal mean
testing Chapter 8 mnormt.twosided Bayesian test of a two-sided hypothesis about a normal mean
utility Chapter 8 regroup Collapses a matrix by summing over rows
data Chapter 8 soccergoals Goals scored by professional soccer team
data Chapter 9 achievement School achievement data
data Chapter 9 baseball.1964 Team records in the 1964 National League baseball season
regression Chapter 9 bayes.model.selection Bayesian regression model selection using G priors
regression Chapter 9 bayesresiduals Computation of posterior residual outlying probabilities for a linear regression model
data Chapter 9 birdextinct Bird measurements from British islands
data Chapter 9 birthweight Birthweight regression study
regression Chapter 9 blinreg Simulation from Bayesian linear regression model
regression Chapter 9 blinregexpected Simulates values of expected response for linear regression model
regression Chapter 9 blinregpred Simulates values of predicted response for linear regression model
model Chapter 9 bradley.terry.post Log posterior of a Bradley Terry random effects model
data Chapter 9 breastcancer Survival experience of women with breast cancer under treatment
data Chapter 9 chemotherapy Chemotherapy treatment effects on ovarian cancer
utility Chapter 9 dmnorm The probability density function for the multivariate normal (Gaussian) probability distribution
data Chapter 9 puffin Bird measurements from British islands
regression Chapter 9 reg.gprior.post Computes the log posterior of a normal regression model with a g prior.
utility Chapter 9 rigamma Random number generation for inverse gamma distribution
utility Chapter 9 rmnorm Random number generation for multivariate normal
data Chapter 9 schmidt Batting data for Mike Schmidt
regression Chapter 9 weibullregpost Log posterior of a Weibull proportional odds model for survival data
regression Chapter 10 bayes.probit Simulates from a probit binary response regression model using data augmentation and Gibbs sampling
regression Chapter 10 bprobit.probs Simulates fitted probabilities for a probit regression model
data Chapter 10 calculus.grades Calculus grades dataset
data Chapter 10 darwin Darwin's data on plants
data Chapter 10 donner Donner survival study
data Chapter 10 election Florida election data
regression Chapter 10 hiergibbs Gibbs sampling for a hierarchical regression model
data Chapter 10 iowagpa Admissions data for an university
model Chapter 10 ordergibbs Gibbs sampling for a hierarchical regression model
model Chapter 10 robustt Gibbs sampling for a robust regression model
data Chapter 11 bermuda.grass Bermuda grass experiment data
utility Chapter 11 careertraj.setup Setup for Career Trajectory Application
data Chapter 11 sluggerdata Hitting statistics for ten great baseball players
one parameter Not in book discrete.bayes Posterior distribution with discrete priors
two parameters Not in book discrete.bayes.2 Posterior distribution of two parameters with discrete priors
model Not in book logctablepost Log posterior of difference and sum of logits in a 2x2 table
one parameter Not in book normal.normal.mix Computes the posterior for normal sampling and a mixture of normals prior
two parameters Not in book normpostpred Posterior predictive simulation from Bayesian normal sampling model
one parameter Not in book plot.bayes Posterior distribution with discrete priors
two parameters Not in book plot.bayes2 Posterior distribution of two parameters with discrete priors
one parameter Not in book predplot Plot of predictive distribution for binomial sampling with a beta prior
one parameter Not in book print.bayes Posterior distribution with discrete priors
two parameters Not in book prior.two.parameters Construct discrete uniform prior for two parameters
utility Not in book rtruncated Simulates from a truncated probability distribution
data Not in book strikeout Baseball strikeout data
one parameter Not in book summary.bayes Posterior distribution with discrete priors
one parameter Not in book triplot Plot of prior, likelihood and posterior for a proportion