Category |
Chapter |
Name |
Description |
|
|
|
|
|
|
data |
Chapter 1 |
studentdata |
Student dataset |
|
one parameter |
Chapter 2 |
beta.select |
Selection of Beta Prior Given
Knowledge of Two Quantiles |
|
one parameter |
Chapter 2 |
discint |
Highest probability interval for a
discrete distribution |
|
one parameter |
Chapter 2 |
histprior |
Density function of a histogram
distribution |
|
one parameter |
Chapter 2 |
pbetap |
Predictive distribution for a
binomial sample with a beta prior |
|
one parameter |
Chapter 2 |
pdisc |
Posterior distribution for a
proportion with discrete priors |
|
one parameter |
Chapter 2 |
pdiscp |
Predictive distribution for a
binomial sample with a discrete prior |
|
one parameter |
Chapter 3 |
binomial.beta.mix |
Computes the posterior for binomial
sampling and a mixture of betas prior |
|
data |
Chapter 3 |
footballscores |
Game outcomes and point spreads for
American football |
|
one parameter |
Chapter 3 |
normal.select |
Selection of Normal Prior Given
Knowledge of Two Quantiles |
|
testing |
Chapter 3 |
pbetat |
Bayesian test of a proportion |
|
one parameter |
Chapter 3 |
poisson.gamma.mix |
Computes the posterior for Poisson
sampling and a mixture of gammas prior |
|
data |
Chapter 4 |
election.2008 |
Poll data from 2008 U.S.
Presidential Election |
|
model |
Chapter 4 |
howardprior |
Logarithm of Howard's dependent
prior for two proportions |
|
model |
Chapter 4 |
logisticpost |
Log posterior for a binary response
model with a logistic link and a uniform prior |
data |
Chapter 4 |
marathontimes |
Marathon running times |
|
two parameters |
Chapter 4 |
mycontour |
Contour plot of a bivariate density
function |
|
model |
Chapter 4 |
normchi2post |
Log posterior density for mean and
variance for normal sampling |
|
two parameters |
Chapter 4 |
normpostsim |
Simulation from Bayesian normal
sampling model |
|
utility |
Chapter 4 |
rdirichlet |
Random draws from a Dirichlet
distribution |
|
two parameters |
Chapter 4 |
simcontour |
Simulated draws from a bivariate
density function on a grid |
|
model |
Chapter 5 |
bayes.influence |
Observation sensitivity analysis in
beta-binomial model |
|
model |
Chapter 5 |
betabinexch |
Log posterior of logit mean and log
precision for Binomial/beta exchangeable model |
model |
Chapter 5 |
betabinexch0 |
Log posterior of mean and precision
for Binomial/beta exchangeable model |
|
data |
Chapter 5 |
cancermortality |
Cancer mortality data |
|
utility |
Chapter 5 |
dmt |
Probability density function for
multivariate t |
|
general |
Chapter 5 |
impsampling |
Importance sampling using a t
proposal density |
|
general |
Chapter 5 |
laplace |
Summarization of a posterior density
by the Laplace method |
|
utility |
Chapter 5 |
lbinorm |
Logarithm of bivariate normal
density |
|
general |
Chapter 5 |
rejectsampling |
Rejecting sampling using a t
proposal density |
|
utility |
Chapter 5 |
rmt |
Random number generation for
multivariate t |
|
general |
Chapter 5 |
sir |
Sampling importance resampling |
|
model |
Chapter 6 |
cauchyerrorpost |
Log posterior of median and log
scale parameters for Cauchy sampling |
|
general |
Chapter 6 |
gibbs |
Metropolis within Gibbs sampling
algorithm of a posterior distribution |
|
model |
Chapter 6 |
groupeddatapost |
Log posterior of normal parameters
when data is in grouped form |
|
general |
Chapter 6 |
indepmetrop |
Independence Metropolis independence
chain of a posterior distribution |
|
general |
Chapter 6 |
rwmetrop |
Random walk Metropolis algorithm of
a posterior distribution |
|
data |
Chapter 6 |
stanfordheart |
Data from Stanford Heart
Transplanation Program |
|
model |
Chapter 6 |
transplantpost |
Log posterior of a Pareto model for
survival data |
|
data |
Chapter 7 |
hearttransplants |
Heart transplant mortality data |
|
model |
Chapter 7 |
normnormexch |
Log posterior of mean and log
standard deviation for Normal/Normal exchangeable model |
model |
Chapter 7 |
poissgamexch |
Log posterior of Poisson/gamma
exchangeable model |
|
testing |
Chapter 8 |
bfexch |
Logarithm of integral of Bayes
factor for testing homogeneity of proportions |
|
testing |
Chapter 8 |
bfindep |
Bayes factor against independence
assuming alternatives close to independence |
|
testing |
Chapter 8 |
ctable |
Bayes factor against independence
using uniform priors |
|
data |
Chapter 8 |
jeter2004 |
Hitting data for Derek Jeter |
|
model |
Chapter 8 |
logpoissgamma |
Log posterior with Poisson sampling
and gamma prior |
|
model |
Chapter 8 |
logpoissnormal |
Log posterior with Poisson sampling
and normal prior |
|
testing |
Chapter 8 |
mnormt.onesided |
Bayesian test of one-sided
hypothesis about a normal mean |
|
testing |
Chapter 8 |
mnormt.twosided |
Bayesian test of a two-sided
hypothesis about a normal mean |
|
utility |
Chapter 8 |
regroup |
Collapses a matrix by summing over
rows |
|
data |
Chapter 8 |
soccergoals |
Goals scored by professional soccer
team |
|
data |
Chapter 9 |
achievement |
School achievement data |
|
data |
Chapter 9 |
baseball.1964 |
Team records in the 1964 National
League baseball season |
|
regression |
Chapter 9 |
bayes.model.selection |
Bayesian regression model selection
using G priors |
|
regression |
Chapter 9 |
bayesresiduals |
Computation of posterior residual
outlying probabilities for a linear regression model |
data |
Chapter 9 |
birdextinct |
Bird measurements from British
islands |
|
data |
Chapter 9 |
birthweight |
Birthweight regression study |
|
regression |
Chapter 9 |
blinreg |
Simulation from Bayesian linear
regression model |
|
regression |
Chapter 9 |
blinregexpected |
Simulates values of expected
response for linear regression model |
|
regression |
Chapter 9 |
blinregpred |
Simulates values of predicted
response for linear regression model |
|
model |
Chapter 9 |
bradley.terry.post |
Log posterior of a Bradley Terry
random effects model |
|
data |
Chapter 9 |
breastcancer |
Survival experience of women with
breast cancer under treatment |
|
data |
Chapter 9 |
chemotherapy |
Chemotherapy treatment effects on
ovarian cancer |
|
utility |
Chapter 9 |
dmnorm |
The probability density function for
the multivariate normal (Gaussian) probability distribution |
data |
Chapter 9 |
puffin |
Bird measurements from British
islands |
|
regression |
Chapter 9 |
reg.gprior.post |
Computes the log posterior of a
normal regression model with a g prior. |
|
utility |
Chapter 9 |
rigamma |
Random number generation for inverse
gamma distribution |
|
utility |
Chapter 9 |
rmnorm |
Random number generation for
multivariate normal |
|
data |
Chapter 9 |
schmidt |
Batting data for Mike Schmidt |
|
regression |
Chapter 9 |
weibullregpost |
Log posterior of a Weibull
proportional odds model for survival data |
|
regression |
Chapter 10 |
bayes.probit |
Simulates from a probit binary
response regression model using data augmentation and Gibbs sampling |
regression |
Chapter 10 |
bprobit.probs |
Simulates fitted probabilities for a
probit regression model |
|
data |
Chapter 10 |
calculus.grades |
Calculus grades dataset |
|
data |
Chapter 10 |
darwin |
Darwin's data on plants |
|
data |
Chapter 10 |
donner |
Donner survival study |
|
data |
Chapter 10 |
election |
Florida election data |
|
regression |
Chapter 10 |
hiergibbs |
Gibbs sampling for a hierarchical
regression model |
|
data |
Chapter 10 |
iowagpa |
Admissions data for an university |
|
model |
Chapter 10 |
ordergibbs |
Gibbs sampling for a hierarchical
regression model |
|
model |
Chapter 10 |
robustt |
Gibbs sampling for a robust
regression model |
|
data |
Chapter 11 |
bermuda.grass |
Bermuda grass experiment data |
|
utility |
Chapter 11 |
careertraj.setup |
Setup for Career Trajectory
Application |
|
data |
Chapter 11 |
sluggerdata |
Hitting statistics for ten great
baseball players |
|
one parameter |
Not in book |
discrete.bayes |
Posterior distribution with discrete
priors |
|
two parameters |
Not in book |
discrete.bayes.2 |
Posterior distribution of two
parameters with discrete priors |
|
model |
Not in book |
logctablepost |
Log posterior of difference and sum
of logits in a 2x2 table |
|
one parameter |
Not in book |
normal.normal.mix |
Computes the posterior for normal
sampling and a mixture of normals prior |
|
two parameters |
Not in book |
normpostpred |
Posterior predictive simulation from
Bayesian normal sampling model |
|
one parameter |
Not in book |
plot.bayes |
Posterior distribution with discrete
priors |
|
two parameters |
Not in book |
plot.bayes2 |
Posterior distribution of two
parameters with discrete priors |
|
one parameter |
Not in book |
predplot |
Plot of predictive distribution for
binomial sampling with a beta prior |
|
one parameter |
Not in book |
print.bayes |
Posterior distribution with discrete
priors |
|
two parameters |
Not in book |
prior.two.parameters |
Construct discrete uniform prior for
two parameters |
|
utility |
Not in book |
rtruncated |
Simulates from a truncated
probability distribution |
|
data |
Not in book |
strikeout |
Baseball strikeout data |
|
one parameter |
Not in book |
summary.bayes |
Posterior distribution with discrete
priors |
|
one parameter |
Not in book |
triplot |
Plot of prior, likelihood and
posterior for a proportion |
|