ANSWERS TO ACTIVITIES

 

TOPIC 16 - Learning About a Proportion

 

Activity 16-1

 

(a)     .75

(b)     .5

(c)н Table after observing 1st data result = "acceptable" should look like



MODEL

PRIOR

LIKE

PRODUCT

POST

p=.75

.9

.75

.675

.931

p=.5

.1

.5

.050

.069

SUM

н

 

.725

1.000

 

(g) Completed table after observing 2nd data result = "defective":

MODEL

PRIOR

LIKE

PRODUCT

POST

p=.75

.931

.25

.233

.869

p=.5

.069

.5

.035

.131

SUM

н

 

.268

1.000

 

(h) Completed table after observing 3rd data result = "defective":

MODEL

PRIOR

LIKE

PRODUCT

POST

p=.75

.869

.25

.217

.770

p=.5

.131

.5

.065

.230

SUM

н

 

.282

1.000

 

(g) Completed table after observing 4th data result = "defective":

MODEL

PRIOR

LIKE

PRODUCT

POST

p=.75

.770

.25

.192

.627

p=.5

.230

.5

.115

.373

SUM

н

 

.307

1.000

 

(j) Likelihood for p=.75: LIKE = .75 x .25 x .25 x .25 = .0117

нннн Likelihood for p = .25: LIKE = .5 x .5 x .5 x .5 = .0625

 

MODEL

PRIOR

LIKE

PRODUCT

POST

p=.75

.9

.0117

.105

.629

p=.5

.1

.0625

.062

.371

SUM

н

 

.167

1.000

 

Activity 16-2

 

(a)     Likelihood of (H,H,O,O) for p=.3 is LIKE = .3 x .3 x .7 x .7 = .0441

ннннннн Likelihood of (H,H,O,O) for p = .4 is LIKE = .4 x .4 x .6 x .6 = .0576

 

(b)нннннннннн

нMODEL

PRIOR

LIKE

PRODUCT

POST

p = .2

.4

.0256

.0102

.278

p = .3

.59

.0441

.0260

.706

p = .4

.01

.0576

.0006

.016

SUM

 

 

.0368

1.000

 

Activity 16-3

 

Let's suppose I obtained 2 heads in 5 spins -- I have the following posterior probabilities:

 

ннннн pннннннн

post

ннннннн 0 нннн

0

ннн 0.1000

0.0440

ннн 0.2000

0.1230

ннн 0.3000

0.1850

ннн 0.4000

0.2070

ннн 0.5000

0.1880

ннн 0.6000

0.1380

ннн 0.7000

0.0790

ннн 0.8000

0.0310

ннн 0.9000

0.0050

0

post

 

 

(b)     The most likely value of p is .4 -- this value has a probability of .207.

(c)     нThe probability that p is equal to .7 is .079

(d)     The probability that p is greater than 5

= prob (p = .6, .7, .8, .9, 1)

= .138 + .079 + .031 + .005 + 0 = .253

(e)     ordering values of p by most likely to least likely

 

 

ннннн pннннннн

post

cum prob

.4

0.2070

0.2070

.5

0.1880

0.3950

.3

0.1850

0.5800

.6

0.1380

0.7180

.2

0.1230

0.8410

.7

0.0790

0.9200

.1

0.0440

0.9640

.8

0.0310

0.9950

.9

0.0050

1.0000

1

0

1.0000

0

0

1.0000

 

(f)      50% probability set is {.3, .4, .5}

90% probability set is {.2, .3, .4, .5, .6, .7}

 

Activity 16-4

 

(c)     16/22 = .727

 

(d)     No, since you are only considering couples with different ages.

(e)     The most likely values are p = .71, .72, .73, .74

(f)      Prob(p is larger than .5) = 1 - Prob(p is .5 or smaller)

= 1 - Prob(p is 0, .01, .02, ж, .5)

= 1 - [.001 + .001 + .001 + .001 + .002 + .002 + .003 + .003 + .004]

= 1 - .018 = .982 .

(g)     I put in the 15 most likely values of p and the associated probabilities in the table below:

 

PROPORTION p

PROBABILITY

.71, .72, .73, .74

.043, .043, .043, .043

.70, .75н

.042, .042

.76, .69нннн

.041, .040

.68, .77, .67, .78

.039, .039, .037, .037

.66, .79, .65нн

.034, .034, .032

 

нннннннннннн The total probability on the right is .043 + .043 + ж+ .032 = .589

ннннннннннн So the set of values {.71, .72, ж, .65} has total probability .589

(h)     The proportion p lies between .65 and .79 with probability .589 - that is, [.65, .79] is a 58.9% probability interval.

 

нннн Activity 16-5

 

(a)      Ifн I am very skeptical that Frank has ESP, I would assign the model p = .5 a small probability.

 

My prior might be

 

MODEL

PRIOR

p = .25нннннннн

.9нннннннн

p = .5нннннннннн

.1нннннннн

 

Your prior could be different, but the model p = .5 should be given a small probability.

 

(c) data is C = Frank got card correct

 

MODEL

PRIOR

ннн LIKEннн

PRODUCT

POSTERIOR

p = .25нннннннн

.9нннннннн

.25ннннннннн

.225

.818

p = .5нннннннннн

.1нннннннн

.5ннннннннннн

.050ннннннннннннн

.182

SUM

 

 

.275

1.000

 

(d) Frank got second card wrong (W)

 

MODEL

PRIOR

ннн LIKEннн

PRODUCT

POSTERIOR

p = .25нннннннн

.818нннннннн

.75ннннннннн

.614

.871

p = .5нннннннннн

.182нннннннн

.5ннннннннннн

.091

.129

SUM

 

 

.705

1.000

 

 

ннн Activity 16-6

 

(a)    

MODEL

PRIOR

p=.5

1/3 = .33

p=.67

1/3 = .33

p=.83

1/3 = .33

 

(b)     Data is G, G, G, M

 

нн LIKELIHOODS:

нннннннн if p = .5, prob(G, G, G, M) = .5 x .5 x .5 x .5 = .0625

нннннннн if p = .67, prob(G, G, G, M) = .67 x .67 x .67 x .33 = .0993

нннннннн if p = .83, prob(G, G, G, M) = .83 x .83 x .83 x .17 =н .0972

 

(d)

 

MODEL

PRIOR

LIKE

PRODUCT

POSTERIOR

p=.5

1/3 = .33

.0625ннннннн

.0206нннннннннн

.241

p=.67

1/3 = .33

.0993ннннннн

.0328нннннннннн

.383

p=.83

1/3 = .33

.0972ннннннн

.0321нннннннннн

.375

SUM

 

 

.0855

 

 

 

н Activity 16-8

 

(d)     Of the 20 pages, 6 contain ads, so I guess p is in the neighborhood of 6/20 = .3

 

(e)нн The 3 most likely values of p are .2, .3, .4

(f)н The probability that p is either .2, .3, .4н = .229 + .403 + .261 = .893

(g)н Prob( p is at least .5) = Prob( p is .5, .6, ж, 1) = .078 + .010 + 0 + ж+ 0 = .088.