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Abstract 
 
This paper considers the estimation of the career hitting trajectories for a large number of 
historical baseball players.  A linear-weight batting statistic is used to measure a player’s 
ability to create runs for his team, and a quadratic model is used to summarize a player’s 
trajectory.  A Bayesian exchangeable model is used to simultaneously estimate the 
trajectories for all players with at least 5000 career at-bats who are born in a particular 
decade.  The estimated trajectories are used to analysis the aging patterns of players from 
different decades.  In addition, they are also used to estimate the peak ability and peak 
age for players born in the 1930’s and to make comparisons between great players from 
the same era. 
 
1.  Introduction 
 
One general topic of discussion among baseball fans is the comparison of players.  Fans 
will compare two players from the same era with respect to a number of aspects, 
including their talent to hit, their fielding ability, and their speeds in running the bases.  
However, there is one confounding issue that complicates any comparison.  Generally, 
most of the best baseball players start playing professional baseball in their early 20’s and 
finish in their late 30’s, and it is well known that a player’s ability does not remain 
constant over the 15-20 years of his career.  In fact, a player’s ability is thought to 
generally start at a relatively low level, increase until a particular peak age, and then 
deteriorate gradually until retirement, as shown in the graph of Figure 1.   We will call 
this ability pattern the career trajectory of a player. 
 

 
Figure 1 

Basic shape of the batting ability of a player as a function of age. 
 
Because of this general pattern of aging of baseball players, the abilities of two players in 
a particular season should be judged in the context of their career trajectories.   It is a bit 
unfair to compare the hitting accomplishments of a 30-year-old player with a 40-year-old 
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player in a particular season, since the first player is close to his peak performance and 
the second player is close to retirement.  Instead, it is better to compare the entire career 
trajectories of the two players.  In this way, one is comparing the hitting accomplishments 
of the two players controlling for the aging process.   
 
In this paper, we estimate the career hitting trajectories for a large number of historical 
baseball players.  We restrict attention to those hitters with at least 5000 career plate 
appearances and group the players by the decade of their birth year.  For each player’s 
season of his career, we observe the number of plate appearances and an estimate of the 
player’s hitting performance.  In Section 3, we justify the use of a linear weight batting 
statistic as a “good” measure of hitting performance.  A simple way of modeling the 
career trajectory of a single player is by a quadratic fit.  For many players, this quadratic 
model gives a reasonable estimate of the career trajectory.  However, it will be seen in 
Section 5 that the quadratic fit can give odd estimates of the trajectory for some players.  
This analysis motivates the use of a Bayesian exchangeable model that reflects the belief 
in similarity in the career trajectories for the players born during the same decade.  The 
trajectory estimates from this exchangeable model will be seen to correct some of the 
anomalous features of the individual trajectory estimates. 
 
The estimated career trajectories provide a useful way of comparing hitters in a particular 
decade.  From a player’s estimated trajectory, we can estimate the player’s age where his 
ability is maximized, the hitting ability of the player at this peak, and the size of the 
increase/decrease of the batter’s ability about the peak.  In Section 6, we use these three 
measures (peak age, ability at peak, and rate of growth and decline) to describe the 
trajectories of all of the hitters in a decade.  We use these measures to judge the hitting 
accomplishments of all players during a particular decade.  In Section 7, we compare 
these model-based estimates with naïve estimates of peak ability and peak age based on a 
player’s career statistics. We use these estimated trajectories in Section 8 to compare the 
hitting accomplishments of some famous players. 
 
2.  The data 
 
From Sean Lahman’s baseball database (obtainable from www.baseball1.com), one can 
obtain the season batting statistics for all players in the history of Major League Baseball.   
We focus on the players who were born on or after 1910, and we divide the players into 
six groups by the decade in which they were born (1910’s, 1920’s, 1930’s, 1940’s, 
1950’s, and 1960’s).  
 
For each season for each player, we record (1) the season year, (2) the age of the player 
on July 1 of that season, and (3) the basic hitting statistics (ab, h, 2b, 3b, hr, bb, sf, sh, 
hbp). 
 
We wish to focus our analysis on players who played many seasons with many plate 
appearances.  Also we wish to exclude pitchers and part-time players with a small 
number of plate appearances.  So we restrict attention in our analysis to the players who 
had at least 5000 career plate appearances.  Through the 2001 baseball season, there were 

2 

http://www.baseball1.com/


 

473 players born on or after 1910 who had at least 5000 plate appearances.  Table 1 
shows the number of players born in each of the six decades and lists some famous hitters 
from each decade. 
 

Table 1 
Number of players with at least 5000 plate appearances born in each of six decades and 

some famous players in each decade. 
 

Birthyear Number of 
players with 

5000 PA 

Some famous hitters in the decade. 

1910-1919 50 Hank Greenberg, Joe DiMaggio, Ted Williams 
1920-1929 50 Ralph Kiner, Duke Snider, Stan Musial 
1930-1939 61 Mickey Mantle, Willie Mays, Hank Aaron 
1940-1949 109 Mike Schmidt, Willie Stargell, Reggie Jackson 
1950-1959 97 George Brett, Eddie Murray, Jim Rice 
1960-1969 106 Barry Bonds, Sammy Sosa, Mark McGwire 

 
3.  Measure of batting performance 
 
Given a player’s hitting statistics for a season, we wish to use a good estimate of the 
player’s hitting ability.  The standard batting measures that are commonly reported in the 
media are the batting average (AVG), the slugging percentage (SLG), and the on-base 
percentage (OBP).  It is well known by sabermetricians that these three measures are 
relatively weak measures of batting performance.  The batting average ignores the plate 
appearances where the player gets on-base by walks, and places equal weights on all 
types of hits.  The slugging percentage, like the batting average, ignores walks, and 
weights hits by the number of bases attained.  (We will see shortly that the number of 
bases achieved is not the best way of weighting the different types of hits.)  The on-base 
percentage does account for walks, but (like the batting average) places equal value on all 
types of hits. 
 
We would like to use a measure of batting performance that 
 

• accounts for the value of hits and walks 
• weights the different types of hits (single, double, triple, and home run) by 

numbers that reflect the values of these hits 
 
Albert and Bennett (2001) give an extensive review of different batting measures.  Since 
the goal of hitting is to produce runs, it makes sense to give weights to different batting 
events that correspond to the values of these events in producing runs.  One can assess 
the value of these events by fitting a regression model to team offensive statistics.  Thorn 
and Palmer (1984) (also see Thorn et al (2001)) found that a good measure of batting 
performance is the linear weights formula 
 

.46 (1B) +.80 (2B) +1.02 (3B) +1.40 (HR)+.33 (BB+HBP)LW = × × × × × , 
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where 1B, 2B, 3B, HR are respectively the number of singles, doubles, triples, and home 
runs of a player, and BB, HBP are the number of walks and hit-by-pitch.   
 
The linear weights statistic LW measures the total run production of a player.  To measure 
the ability of a player to create runs during a particular plate appearance, we divide the 
linear weights statistic by the number of plate appearances, obtaining the average linear 
weight 
 

PA
LWALW =  

 
where we define the number of plate appearances to be  
 

PA AB BB HBP= + + , 
 
where AB is the number of at-bats.  Note that we are ignoring the benefit of sacrifice flies 
in this definition.  Although sacrifice flies do help in scoring runs, Albert and Bennett 
(2001) show that it is difficult to assess their benefit using the linear weights regression 
model and so they exclude this type of batting play in the model.  Since sacrifice flies are 
relatively rare batting events in baseball, their exclusion will have little effect in our 
player comparisons. 
 
4.  Quadratic regression model 
 
We are interested in modeling a player’s batting performance in terms of his age, where 
we use the average linear weight (ALW) as our batting measure.  We expect a player’s 
ability to grow during his early years in the Major Leagues, reach a peak, and then 
decrease in his final years as a professional.  That is, we expect a player’s ability to have 
the basic shape shown in Figure 1.  
 
We can obtain this shape by use of the quadratic model 
 

2
0 1 2age + ageβ β β+ . 

 
To summarize a particular quadratic fit, it is helpful to reparameterize ( , by  0 1 2, )β β β

the peak value, 
2

2
1

0 4β
β

β −=P the  peak age 
2

1*

2β
β

−=AGE , and the curvature . The 

peak value is the maximum hitting ability of the player, the peak age is the age where the 
player achieved this maximum ability, and the curvature is informative about the rate at 
which the player’s ability changes around the peak value. 

2β

 
Let’s illustrate the use of a quadratic fit using batting statistics for Sal Bando displayed in 
Table 2.  Figure 2 constructs a scatterplot of the (age, ALW) data and overlays the 
quadratic fit  
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2-0.27 0.033 age 0.00058 age+ − . 

 
From this fit, we compute the peak value P = 0.197 and the peak age = 28.4 – both 
these values are shown in Figure 2.  We can conclude that Bando’s peak ability is 
approximately .2 and he achieved it about age 28.  The coefficient value =-.00058 
reflects the shape of the quadratic fit about the modal value. 

*AGE

2β

 
Table 2:  Batting statistics for Sal Bando. 

 
AGE PA ALW 
22 24 0.1780 
23 130 0.1336 
24 605 0.1641 
25 609 0.2165 
26 502 0.2050 
27 538 0.2043 
28 535 0.1756 
29 592 0.2159 
30 498 0.1946 
31 562 0.1720 
32 550 0.1901 
33 580 0.1813 
34 540 0.1986 
35 476 0.1651 
36 254 0.1487 
37 65 0.1577 

 

  
Figure 2:  Scatterplot of (age, ALW) data for Sal Bando with quadratic smoothing curve 

placed on top. 
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5.  Modeling 
 
5.1 Separate Regression Estimates 
 
For a particular player, let (  denote respectively the average linear weight, the 
number of plate appearances, and the age of the player in the jth season.  Since the 
number of plate appearances  varies across seasons, the variability of the response  
will not be constant across seasons and this should be accounted for in our modeling.  We 
assume that is distributed normal with mean given by the regression 

model and variance v .  If we fit this model, the 
maximum likelihood estimates are essentially weighted least-squares estimates with 
weights . 

, , )j j jy n x

jn

2
2 jx

jy

jy

= +0 1 jx +jµ β β β

jn

2 /j σ= jn

 
Generally this model appears to give reasonable estimates at the career trajectory of the 
players’ batting abilities.  However, if one looks at these estimates for many players, 
some estimates appear unsatisfactory.   Many players, such as Sal Bando (see Figure 2), 
exhibit a large season-to-season variability in their ALW values, making it difficult to 
detect the underlying quadratic structure.  Also, unusual ALW values for small or large 
ages can distort the regression fit.   This is illustrated in Figure 3, which plots the data and 
quadratic fits for Norm Cash and Frank Malzone.  For Cash, note that the fit (solid line) 
indicates that he had his greatest ability as a rookie and his ability leveled out for later 
years.  This behavior is inconsistent with our general beliefs about the aging pattern.  For 
Malzone, his relatively poor batting performance at age 26 has a significant effect on the 
quadratic fit.  It seems that the fit has more curvature than we would expect for a player.   
 

 
 
 
Figure 3:  Scatterplots of (age, ALW) data and separate regression estimates (solid lines) 

for Norm Cash and Frank Malzone. 
 
5.2  Combining Regression Estimates 
 
For each player born in a particular decade, we fit the normal regression model for the 
(age, ALW) data.  We observed in Section 5.1 that some of the individual regression 
estimates were unsatisfactory since each fit is based on a relatively small sample and the 
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fit can be easily distorted by a couple of extreme points.  We are interested in combining 
the individual regression estimates in a way that reflects our belief about the common 
aging behavior of major league hitters. 
 
Let denote the vector of regression estimates for the ith player born in 
a particular decade, and let V  denote the corresponding variance-covariance matrix 

(from the maximum likelihood fit) of this regression estimate.  We assume that  is 
distributed , i = 1, …, p.  We wish to simultaneously estimate the underlying 
regression parameters  

)ˆ,ˆ,ˆ(ˆ
210 iiii ββββ =

),( ii VN β

i

β

iβ̂

.,...,1 pβ
 
A Bayesian exchangeable model is a convenient way of combining the individual 
regression estimates.  (A good discussion of the rationale and use of Bayesian 
exchangeable models is contained in Gelman et al (1995), chapters xx and xx.)  We 
believe that the p players born in the particular decade have similar career trajectories, 
and we represent this belief by assuming that  are a random sample from a 

common multivariate normal distribution with mean vector and variance-covariance 
matrix Σ .  The values of the parameters and Σ are unknown and we represent this 
lack of knowledge by placing a uniform distribution on ( , ). 

pββ ,...,1

0β

Σ

0β
0β

 
Expressions for the posterior distribution and a description of the simulation algorithm 
for simulating from this distribution are contained in the Appendix.  We learn about the 
regression vectors by taking a simulated sample from the posterior distribution and 

are estimated by their respective posterior means. pββ ,...,1

 
To understand how this exchangeable model gives “improved” estimates of the career 
trajectories, Figure 4 compares two estimates of the trajectories for Norm Cash and Frank 
Malzone.  The individual estimates are represented by thin lines and the estimates using 
the exchangeable model are shown by thick lines.  Note that the effect of the 
exchangeable model is to move the individual estimates towards a common career 
trajectory estimate.  The exchangeable estimate corrects the nonintuitive decreasing 
estimate for Cash, and corrects the strong curvature of the individual estimate for 
Malzone. 
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Figure 4:  Scatterplots of (age, ALW) and separate regression (thin line) and 

exchangeable (thick line) estimates for Norm Cash and Frank Malzone. 
 
 
6.  Analysis of the estimated career trajectories 
 
For each of the six groups of players categorized by decade, we used the Bayesian 
exchangeable model to simultaneously estimate the trajectories of the players.  For each 
fitted trajectory (estimate at ), we can estimate a player’s peak age, his peak hitting 
ability, and the curvature.  Table 3 summarizes these estimates for all players in each 
decade.  Although there have been large changes in the offensive performances of players 
over the hundred years of baseball, it is interesting to note the similarity of the career 
trajectories across decades.  Although the peak age estimates vary greatly between 
players, the median player estimate is between 27.1-29.8 for all six decades.  In addition, 
the median peak ability estimate is about .2 for all decades, and likewise there are 
similarities of the curvatures across decades.   

iβ

  
Table 3:  Summaries (lower quartile, median, upper quartile) of the estimated trajectories 
of all of the players with at least 5000 plate appearances born between 1910 and 1969. 
 

Decade PEAK AGE PEAK CURVATURE (x 1000) 
1910s (24.1,  28.0, 30.4) (.192,   .201,   .212) (-0.550,   -0.283,   -0.115) 
1920s (27.3,  28.6, 30.0) (.189,   .200,   .210) (-0.694,   -0.484,   -0.316) 
1930s (25.6,  27.1, 28.5) (.178,   .196,   .218) (-0.617,   -0.389,   -0.264) 
1940s (27.6,  28.9, 30.1) (.179,   .193,   .205) (-0.493,   -0.350,   -0.229) 
1950s (27.5,  28.7, 30.0) (.180,   .194,   .204) (-0.482,   -0.365,   -0.241) 
1960s (27.9,  29.8, 32.0) (.188,   .209,   .221) (-0.684,   -0.383,   -0.169) 

 
Next, we focus on the estimated career trajectories of the players born in the 1930’s.  
There are three dimensions of a player’s trajectory, the age where he peaks, the peak 
ability, and the curvature (rate of increase and decrease) about the peak.  Figure 5 plots 
the peak age estimates against the peak estimates for the 61 players with at least 5000 
career plate appearances, and Figure 6 plots the curvature estimates against the peak 
estimates for the same players. 
 

8 



 

 
 

Figure 5 
Scatterplot of peak age and peak estimates for all players born in the 1930’s with at least 

5000 plate appearances. 
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Figure 6 
Scatterplot of curvature and peak estimates for all players born in the 1930’s with at least 

5000 plate appearances. 
 
A number of points are labeled in the two plots corresponding to some of the famous 
hitters of this decade.  Mickey Mantle stands out as the best hitter with regards to peak 
performance.  From Figure 6, Mantle is an extreme point in this group of players, both 
with regards to his peak performance and his large curvature of his trajectory about the 
peak value.  The next two best hitters, Willie Mays and Hank Aaron, had a peak age a bit 
later than Mantle, and both hitters had smaller curvature than Mantle about the peak 
value.  That is, Mays and Aaron were better than Mantle in maintaining their high batting 
performance over many years.  Some interesting extreme points are labeled.  Roberto 
Clemente’s estimated peak age is relatively high.  This particular estimate may have been 
affected by the premature end of his career at age 38.  Roger Maris, despite having 61 
home runs in 1961, has an estimated peak ability of only .22, and he has a large 
curvature, which is reflective of his rapid rise and decline from his peak ability. 
 
Figure 7 plots the estimated career trajectories for eight of the best hitters who were born 
in the 1930’s.  Visually, the career trajectories of Hank Aaron and Willie Mays look very 
similar.  They had similar peak abilities, but Aaron’s ability deteriorated less with 
increasing age.  The size of the decline of some of the great hitters, such as Harmon 
Killebrew, Eddie Mathews, and Willie McCovey, is notable.   
 

 
 

Figure 7 
Estimated career trajectories for eight great hitters who were born in the 1930’s. 
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7.  Comparison of naïve and model-based peak value and peak age estimates 
 
It is instructive to compare the peak value and peak age estimates using the exchangeable 
model with naïve estimates based only on the observed data.  Given a player’s career 
hitting statistics, the naïve estimate of his peak ability is the maximum average linear 
weight 

jj ymax . 
 
Likewise, the naïve estimate of a player’s peak age is the age where his average linear 
weight is maximized. 
 
A scatterplot of the naïve and model-based peak values is shown in Figure 8.  The line 
through the origin with unit slope is drawn on the plot to help in comparison.   Note that 
all of the points fall under the line, indicating that the model-based peak values are 
always smaller than the observed peak values.  This is expected since the naïve estimates 
ignore the large season-to-season variability of the average linear weights.  The line  
 

022.0−= PEAKOBSERVEDPEAKESTIMATED  
 
is a reasonable fit to the points, indicating that the exchangeable peak value estimate is 
generally .02 smaller than the observed peak value. 
 

 
 

Figure 8 
Scatterplot of observed and model-based estimates of peak values for hitters born in the 

1930’s. 
 
Figure 9 displays a scatterplot of the naïve and model-based peak age estimates.  Note 
that there is a wide variability in the observed peak ages for the players.  This indicates 
that it is relatively difficult to estimate a player’s peak age without using some smooth 
model.  In contrast, the estimates of the peak ages using the exchangeable model are 
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stable with most of the values between 25 and 30 years.  There is a weak association in 
the scatterplot, indicating that the year in which a player has the best performance is not a 
good predictor of his model-based peak age. 
 

 
 

Figure 9 
Scatterplot of observed and model-based estimates of peak ages for hitters born in the 

1930’s. 
 

In Figure 7, we observe that some players like Roger Maris had short careers with large 
curvatures, and other players such as Hank Aaron had long careers with small curvatures.  
Is there a general relationship between a player’s length of career (defined by the range of 
ages of his career) and the curvature in the model-based fit?  To answer this question, 
Figure 10 shows a scatterplot of the career lengths and the curvature estimates for the 
players born in the 1930’s.  A loess smoother (Cleveland, 1979) is placed on top of the 
scatterplot to show the basic pattern in the plot.  Note for career lengths between 10 and 
19 years, there appears to be a positive association in the plot – in this range of career 
lengths, players with longer careers tend to have smaller curvature in their career 
trajectories 
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Figure 10 
Scatterplot of length of career and curvature estimates for hitters born in the 1930’s.  A 

lowess smoother is drawn on top of the scatterplot. 
 

8.  Comparison of players 
 
The estimated career trajectories are helpful in the comparison of players from a given 
era.  Several chapters in Berra (2002) involve these type of player comparisons.  Among 
the players born in the 1910s, the dominant two hitters were Ted Williams and Joe 
DiMaggio.  Table 4 gives the age, average linear weight, and number of plate 
appearances for Williams and DiMaggio for the seasons of their careers.  Figure 11 plots 
the values of ALW for the two players and superimposes the fitted trajectories.  With 
respect to hitting, it is clear from the figure that Williams was the superior hitter.  What is 
remarkable is the flatness of Williams’ trajectory, and this is even more remarkable given 
the extra knowledge that there were two significant breaks in his career due to military 
service in World War II and the Korean Conflict. 
 
Table 4:  Average linear weight, number of plate appearances, and age for Ted Williams 
and Joe DiMaggio for the seasons of their careers. 
 

 
 TED WILLIAMS JOE DIMAGGIO 

Age ALW PA ALW PA 
20 0.2542 674   
21 0.2508 660 0.2325 665 
22 0.3007 604 0.2684 690 
23 0.2726 671 0.2388 660 
24   0.2739 518 
25   0.2573 572 
26   0.2643 621 
27 0.2766 672 0.214 680 
28 0.2689 692   
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29 0.2652 638   
30 0.2722 730   
31 0.2665 416 0.2164 564 
32 0.2448 675 0.2235 601 
33 0.3333 12 0.2449 669 
34 0.3414 110 0.2533 329 
35 0.2716 523 0.2414 606 
36 0.2864 413 0.1935 482 
37 0.2598 503   
38 0.2972 544   
39 0.2517 513   
40 0.1965 326   
41 0.2659 388   

 

 
 

Figure 11 
Scatterplot of ALW and fitted trajectories for Ted Williams and Joe DiMaggio. 

 
Table 5 give the hitting statistics and Figure 12 plots the estimated career trajectories for 
Mickey Mantle and Willie Mays, two great hitters who were born in the 1930’s.  Here the 
comparison is not quite as clear as it was for Williams and DiMaggio.  Mantle’s 
estimated peak ability is a bit higher than Mays, but Mays sustained his pattern of great 
hitting for a long time. 
 
Table 5:  Average linear weight, number of plate appearances, and age for Mickey 
Mantle and Willie Mays for the seasons of their careers. 
 

 MICKEY MANTLE WILLIE MAYS 
Age ALW PA ALW PA 

19 0.1948 384   
20 0.2268 624 0.2045 523 
21 0.2189 540 0.1812 144 
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22 0.2272 645   
23 0.2534 633 0.2673 633 
24 0.2832 647 0.2622 663 
25 0.2784 620 0.2302 647 
26 0.2509 650 0.2539 662 
27 0.2223 636 0.2451 679 
28 0.2354 639 0.2403 642 
29 0.2752 640 0.2313 660 
30 0.2602 500 0.242 655 
31 0.2588 212 0.2491 703 
32 0.2483 564 0.2394 664 
33 0.2049 434 0.2457 661 
34 0.2288 390 0.259 634 
35 0.204 548 0.2304 624 
36 0.1936 542 0.196 539 

   0.212 567 
   0.1962 455 
   0.2206 560 
   0.2214 532 
   0.1968 305 
   0.1625 237 

 

 
 

Figure 12 
Scatterplot of ALW and fitted trajectories for Mickey Mantle and Willie Mays. 

 
Last, we compare Pete Rose and Tim Raines, who were both great contact hitters in the 
modern era.  Table 6 displays the hitting statistics for Rose and Raines, and Figure 13 
shows the estimated trajectories.  Although Rose is commonly thought by baseball fans to 
be the superior hitter, this figure seems to indicate that the two hitters had very similar 
trajectories.   Most fans believe that Pete Rose would be easily elected to the Hall of 
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Fame if he were eligible.  If so, then this analysis indicates that Tim Raines is also 
deserving of election to the Hall of Fame. 
 
Table 6:  Average linear weight, number of plate appearances, and age for Pete Rose and 
Tim Raines for the seasons of their careers. 
 

 PETE ROSE TIM RAINES 
Age ALW PA ALW PA 

   0.0938 26 
   0.2007 360 

22 0.1716 683 0.1752 724 
23 0.1548 554 0.1996 714 
24 0.2007 747 0.2014 711 
25 0.1988 692 0.2127 659 
26 0.1973 644 0.2145 660 
27 0.2091 686 0.2315 624 
28 0.2269 720 0.1925 484 
29 0.2082 724 0.1981 613 
30 0.1926 703 0.1875 530 
31 0.1929 725 0.1706 697 
32 0.2006 751 0.1904 632 
33 0.1884 763 0.2142 482 
34 0.2026 762 0.1899 446 
35 0.2065 757 0.1946 575 
36 0.1964 726 0.2103 236 
37 0.1918 720 0.2091 312 
38 0.2039 725 0.1889 379 
39 0.1714 727 0.1701 161 
40 0.1864 480   
41 0.1652 707 0.211 107 
42 0.1461 547   
43 0.167 417   
44 0.1737 495   
45 0.1438 271   
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Figure 13 
Scatterplot of ALW and fitted trajectories for Tim Raines and Pete Rose 

 
9.  Related work 
 
Much of the sabermetrics literature is devoted to the evaluation of a player by use of his 
season statistics.  A player’s career batting average that is commonly quoted in the media 
is a relatively poor measure of average performance since it ignores a player’s career 
trajectory and the average will underestimate a player’s peak ability.  James (2001), in his 
evaluation of the best players of all time, implicitly assumes that players have career 
trajectories by taking the mean of the win shares of a player’s five best consecutive 
seasons as one of his measures of performance.   James (1982) discusses the career 
projession of players and gives evidence that players generally peak at age 27.  He 
compares his research with that of Pete Palmer, who found that ballplayers achieve 
constant level performance from ages 23 to 40.  James explains that there is a bias in 
Palmer’s findings, since only the better hitters and pitchers are playing at advanced ages.  
Schell (1999) adjusts his batting averages of historical players by a “longevity 
adjustment” that truncates a player’s hitting data at 8000 at-bats.  This adjustment was 
made to account for the decreasing performance in players’ career trajectories at the end 
of their careers.  Schall and Smith (2000) recently discuss the observed career trajectories 
for hitters and pitchers.  One of their objectives of their study was to see if one could 
predict a player’s career length on the basis of his performance in his rookie season. 
 
From a modeling perspective, Morris (1983) estimated Ty Cobb’s batting average 
trajectory.  In this paper, he illustrated the use of empirical Bayes procedures to shrink 
Cobb’s observed batting averages towards a quadratic fit curve.  Albert (1992) used a 
random effects model to smooth the career trajectory of a batter’s home run rates.  Berry 
et al (1999) performed an extensive study in which they estimated the career trajectories 
for athletes in baseball, hockey, and golf.   They used a nonparametric aging function in 
there modeling in contrast to the quadratic function used here.  Using their model, they 
rated the top 25 hitters of all time using the criteria of batting average and home run rate.   
As noted by Albert (1999), Berry et al (1999) make several questionable assumptions – 
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they assume at each player peaks at the same age and that the maturing and declining 
period is the same across all players.  One advantage of the parametric modeling of this 
paper is that one obtains smooth estimates of the career trajectories and the characteristics 
of the trajectory (the peak height and the peak age) are defined in terms of the regression 
parameters.    
 
Appendix:  Posterior calculations for the Bayesian exchangeable model. 
 
The model 
 
The exchangeable model introduced in Section 5 can be defined in three stages.  At the 
sampling stage, the regression estimate for the ith player, , is assumed to have a 
multivariate normal distribution with mean and known variance matrix V . 

iβ̂

iβ i

 
1.  ˆ distributed ( , ), 1, ,i i iN V iβ β = K p

Σ

=

0 )

 
At the second stage, one assumes that the regression parameters for the p players, ,…, 

,are a random sample from a multivariate normal density with mean and variance 
Σ. 

1β

pβ 0β

 
2.  0

1, , distributed ( , )p Nβ β βK

 
The locations of the hyperparameters ( , Σ) at the second stage are unknown, and so 
they are assigned a uniform density at the third stage of the model. 

0β

 
3. (  0 0, ) distributed from the density ( , ) .g cβ βΣ Σ
 
The posterior distribution 
 
There are p+2 parameters in the model, the p regression vectors ,…, , and the 

hyperparameters ( , Σ) that describe the common distribution for the regression 
vectors.   It is convenient to represent the posterior distribution of the complete set of 
parameters as the product 

1β pβ
0β

 
0 0

1 1( , , , , | ) ( , , | , , ) ( , |p pg data g data g dataβ β β β β β βΣ = Σ ΣK K  
 
where the first term in the product is the joint posterior distribution of the regression 
vectors conditional on values of the hyperparameters, and the second term in the product 
is the posterior distribution of the hyperparameters.  If we are given values of the 
hyperparameters ( , Σ), then, using standard results for linear models, the posterior 
distributions of ,…, are independent where is distributed where 

0β

1β pβ iβ ),( **
ii VN β
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( ) ( )1* 1 1 1 1ˆ
i i i iV Vβ β

−− − − −= + Σ + Σ 0β ( ) 1* 1 1
i iV V

−− −= + Σ,  . 

 
The posterior density of the hyperparameters is given by 
 

1/ 2
0 0

1

1 ˆ ˆ( , | ) exp ( ) ( ) ( )
2

p

i i
i

g data V Vβ β β
−

−

=

 ′Σ = + Σ − − + Σ − 
 

∏ 1 0β β  

 
Simulating from the posterior distribution 
 
The joint posterior distribution of ( ,…, , , Σ) can be simulated by first 

simulating a value of ( , Σ) from its posterior distribution, and then simulating values 
of ,…, from the conditional posterior distribution.  Since the posterior distribution 

of ( , Σ) has a nonstandard form, the independence Metropolis algorithm (Robert and 
Casella, 1999) is used to simulate from this simulation using a suitable proposal density. 

1β pβ 0β
0β

1β

β
pβ

0
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