"Statcast – the New Metrics in Baseball"

Jim Albert
Bowling Green State University

April 7, 2018
My background

- Statistician by training
- Phillies fan
Growing Up in Philly

- Played Little League baseball (no soccer)
- Collected baseball cards
- Played baseball games
Strat-O-Matic Baseball
Enjoyed Reading Bill James
Bill James *Baseball Abstracts*

- Start with a good baseball question
- Collect relevant data
- Explore
- What has been learned?
Fast Forward to 2018

- **R**: Open-source statistics programming language
- Statcast and PitchFX: New sources of data
- Great way to learn data science
Starting in 2006, cameras were installed in each stadium to track pitches.

- Many variables for each pitch are recorded
- Pitch speed, pitch movement, pitch location
- Outcome (called ball or strike, ball in play, etc)
PitchFX data

- All of this data is freely downloadable
- Relatively large dataset
- For June of a recent season, I have a data frame of 120,000 pitches and 49 variables.
Clayton Kershaw
Types of Pitches

- Fastball (two-seam, four-seam, etc.)
- Off-speed (curve ball, slider, changeup)
- A good pitcher typically has at least 2-3 good pitches
Clayton Kershaw - Locations and Outcomes of 3 Pitches

Slider

Curve Ball

Four−Seam

Miss

Slider

pz

px

FALSE

TRUE
Wikipedia:

- Major League Baseball’s (MLB) Statcast is a high-speed, high-accuracy, automated tool developed to analyze player movements and athletic abilities.
- Statcast was introduced to all thirty MLB stadiums in 2015.
- Some of this data is publicly available.
What Does StatCast Measure?

- Pitch information (like PitchFX)
- Movements of every player on the field
- Measurements off of the bat (exit velocity, launch angle, and horizontal angle)
Measuring Fielding

- In the old days, one measured fielding by the fielding percentage

\[PCT = \frac{PO + A}{PO + A + E} \]

- Some players are regarded as great fielders since they have a high fielding percentage
- Derek Jeter received 5 Golden Glove Awards
StatCast Has Changed Things

- Making a outfield catch depends on (1) distance to the location and (2) time the ball is in the air (opportunity)
- Can estimate probability of making a catch
- A great catch is one where the probability of catch is small
Outfield Catch Probability
(Based on Distance Needed / Opportunity Time)
Hitting

- Batter’s objective is to get a base hit
- Different types of batted balls (liner, ground ball, fly ball, and pop up)
- Some of these types are more desirable
- Want to hit the ball hard
- Location of batted ball important
Definition of Batted Ball Type

Launch Angle (LA)

Definition
Launch Angle represents the vertical angle at which the ball leaves a player's bat.
Launch Angle (aLA) is calculated by dividing the sum of all Launch Angles by the number of launches.

As a guideline, here are the Launch Angles for different types of contact:

- Ground ball: Less than 10 degrees
- Line drive: 10-25 degrees
- Fly ball: 25-50 degrees
- Pop up: Greater than 50 degrees
Launch Angle

The “sweet spot”

25-35°

0°
Focus on Hits on Balls in Play

- Hit the ball in the air (positive launch angle)
- But not too high (popup)
For a given exit velocity, what launch angle maximizes the chance of a base hit?
735,817 pitches
Most pitches are not put “in-play”
79 variables collected for each pitch
Filter

- Only consider pitches where the ball is put in play
- Exclude home runs
- Only consider batted balls where launch angle is positive
Fix an Exit Velocity

- Optimal launch angle depends on the exit velocity
- Only consider batted balls close to that velocity
Fix Exit Velocity at 90 mpg

- Bin the launch angles in the groups (0, 1), (1, 2), (2, 3), ...
- Find the number of batted balls and hits in each bin
- Compute the probability of hit in each bin
<table>
<thead>
<tr>
<th>LA</th>
<th>N</th>
<th>H</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1]</td>
<td>39</td>
<td>10.</td>
<td>0.256</td>
</tr>
<tr>
<td>(1,2]</td>
<td>40</td>
<td>14.</td>
<td>0.350</td>
</tr>
<tr>
<td>(2,3]</td>
<td>42</td>
<td>16.</td>
<td>0.381</td>
</tr>
<tr>
<td>(3,4]</td>
<td>38</td>
<td>19.</td>
<td>0.500</td>
</tr>
<tr>
<td>(4,5]</td>
<td>34</td>
<td>18.</td>
<td>0.529</td>
</tr>
<tr>
<td>(5,6]</td>
<td>44</td>
<td>24.</td>
<td>0.545</td>
</tr>
<tr>
<td>(6,7]</td>
<td>31</td>
<td>17.</td>
<td>0.548</td>
</tr>
<tr>
<td>(7,8]</td>
<td>39</td>
<td>24.</td>
<td>0.615</td>
</tr>
<tr>
<td>(8,9]</td>
<td>31</td>
<td>15.</td>
<td>0.484</td>
</tr>
<tr>
<td>(9,10]</td>
<td>37</td>
<td>22.</td>
<td>0.595</td>
</tr>
</tbody>
</table>
Plot Launch Angle Against Hit Probability

Optimal Launch Angle?
What Have We Learned?

- When balls are hit at 90 mpg, probability of hit is maximized at a launch angle of 14 degrees.
- But this optimal launch angle depends on the speed of batted ball.
Dependence of optimal launch angle on speed of batted ball
In Search of the Optimal Launch Angle

By Jim Albert on March 31, 2018 | Edit

Carnegie-Mellon Workshop on April 7

I am excited about participating in the first CMU Baseball Analytics Workshop next Saturday. This workshop will provide an opportunity for students to learn about baseball analytics and do some R programming on baseball data. The participants will be visiting BGSU and meeting with Dan Fox, director of Baseball Informatics for the Pirates. (If you are in the area,
The R script on GitHubGist

R code to find optimal launch angles from Statcast data

```r
library(tidyverse)

# read in the Statcast data for the 2017 season
sc <- read_csv("statcast2017.csv")

# only consider balls put in play
```
Player accounts suggest Statcast data has replaced traditional metrics.

For example, on the first day of spring training, Tampa Bay Rays hitters are told they will be measured by batted-ball exit velocity, not batting average.

Kris Bryant credits his improved performance in 2016 with changes he made in the off-season to adjust the launch angle of his hits.
Analytics and Sports

- More teams are building analytics departments
- Need expertise in all aspects of data science
- Yes, there are jobs in baseball and other sports
Looking Ahead

- Teams are still learning from the Statcast data
- What makes an effective base stealer?
- What variables are important besides speed?
- How you measure these "other" variables?
Baseball is a great way of learning data science

- Tons of good data
- Pose a question and explore the relevant data to answer
- Use graphs to effectively communicate findings