Given a data table with columns Prior and Likelihood, computes posterior probabilities

bayesian_crank(d)

Arguments

d

data frame with columns Prior and Likelihood

Value

data frame with new columns Product and Posterior

Examples

df <- data.frame(p=c(.1, .3, .5, .7, .9), Prior=rep(1/5, 5)) y <- 5 n <- 10 df$Likelihood <- dbinom(y, prob=df$p, size=n) df <- bayesian_crank(df)